Trigonometry Function Formulas – Math Shortcut Tricks
Trigonometry Function Formulas
So, here are few Trigonometry Function Formulas. Let’s learn some basics of these formulas.
Trigonometry Function Formulas of a Right Triangle :
sin α = a / c = opposite / hypotenuse
cos α = b / c = adjacent / hypotenuse
tan α = a / b = opposite / adjacent
cot α = b / a = adjacent / opposite
sec α = c / b Cosec α = c / a
Basic Formula :
sin2 α + cos2 α = 1
tan α . cot tan α = 1
tan α = sin α / cos α = 1 / cot tan α
cot tan α = cos α / sin α = 1 / tan α
1 + tan2 α = 1 / cos2 α = sec2 α
1 + cot tan2 α = 1 / sin2 α = cos sec2 α
Trigonometric Table
α | 00 | 300 | 450 | 600 | 900 | 1200 | 1800 | 2700 | 3600 |
sin α | 0 | 1/2 | √2/2 | √3/2 | 1 | √3/2 | 0 | -1 | 0 |
cos α | 1 | √3/2 | √2/2 | 1/2 | 0 | -1/2 | -1 | 0 | 1 |
tan α | 0 | 1/√3 | 1 | √3 | ∞ | -√3 | 0 | ∞ | 0 |
cot α | ∞ | √3 | 1 | 1/√3 | 0 | -1/√3 | ∞ | 0 | ∞ |
sec α | 1 | 2/√3 | √2 | 2 | ∞ | -2 | -1 | ∞ | 1 |
cosec α | ∞ | 2 | √2 | 2/√3 | 1 | 2/√3 | ∞ | -1 | ∞ |
Co-Ratios
sin | cos | tan | cot | |
-α | -sin α | +cos α | -tan α | -cot α |
900 – α | +cos α | +sin α | +cot α | +tan α |
900 + α | +cos α | -sin α | -cot α | -tan α |
1800 – α | +sin α | -cos α | -tan α | -cot α |
1800 + α | -sin α | -cos α | +tan α | +cot α |
2700 – α | -cos α | -sin α | +cot α | +tan α |
2700 + α | -cos α | +sin α | -cot α | -tan α |
3600k – α | -sin α | +cos α | -tan α | -cot α |
3600k – α | +sin α | +cos α | +tan α | +cot α |
Trigonometry Addition Formula:
- sin(A + B) = sinA cosB + cosA sinB
- sin(A – B) = sinA cosB – cosA sinB
- cos(A + B) = cosA cosB – sinA sinB
- cos(A – B) = cosA cosB + sinA sinB
- tan (A + B) = tanA + tanB / 1 – tanA tanB
- tan(A – B) = tanA – tanB / 1 + tanA tanB
- cot (A+ B) = cotA cotB – 1 / cotA + cotB
Product of Trigonometric Functions:
- sin α cos β = 1/2 [ sin (α + β) + sin(α – β)]
- cos α sin β = 1/2 [ sin (α + β) – sin(α – β)]
- cos α cos β = 1/2 [ cos (α + β) + cos(α – β)]
- sin α sin β = 1/2 [ cos (α – β) – cos(α + β)]
- tan α tan β = tan α + tan β / cot tan α + cot tanβ = – tanα – tan β / cot tan α – cot tan β
Trigonometric Formula with t = tan(x/2)
sinx = 2t / 1 + t2
cos x = 1 – t2 / 1 + t2
tan x = 2t / 1 – t2
cot x = 1 – t2 / 2t
Trigonometric Relation Between Functions:
Angle of a Plane Triangle :
- A, B, C are 3 angles of a triangle
- sin A + sin B + sin c = 4 cos(A / 2) cos(B/2) cos(C/2)
- cosA + cos B + cos C = 4 sin(A/2) sin(B/2) sin(C/2) + 1
- sinA + sinB – sinC = 4sin (A/2) sin (B/2) cos (C/2)
And, please visit this page to get more updates on Math Shortcut Tricks and Trigonometry Function Formulas. You can also like our facebook page to get updates.
So, if you have any question regarding Trigonometry Function Formulas then please do comment on below section.